

Past Papers Nat 5 Chemistry

2018 Marking Scheme

Grade	Mark Required		% condidates achieving anada		
Awarded	(/ ₁₂₅)	%	% candidates achieving grade		
Α	92+	73.6%	36.3%		
В	78+	62.4%	21.8%		
С	64+	51.2%	19.1%		
D	50+	40%	14.0%		
No award	< 50	<40%	8.8%		

Section:	Multiple Cha	oice	Extended A	Answer	Assignn	nent
Average Mark:	17.6	/25	45.6	/75	18.2	/25

2018 National 5 Chemistry Marking Scheme									
M <i>C</i> Qu	Answer	% Pupils Correct	Reasoning						
1	A	91	☑A Increasing particle size decreases the reaction rate ☑B Increasing particle size increases the reaction rate ☑C Increasing concentration increases the reaction rate ☑D Adding a catalyst increases the reaction rate						
2	В	95	Particle Location Charge Mass Proton in nucleus +1 1 amu Neutron in Nucleus 0 1 amu Electron outside nucleus -1 Approx 0						
3	В	82	 ☑A Oxygen exists a diatomic O₂ molecules ☑B Helium is a monatomic noble gas in group 0 ☑C Bromine exists as diatomic Br₂ molecules ☑D Hydrogen exists as diatomic H₂ molecules 						
4	D	57	Hydrogen bromide has the formula HBr using the cross-over rule. The correct structure for this can only be linear.						
5	A	52	✓A Na atoms have electron arrangement 2,8,1 ∴ Na ⁺ ions have arrangement 2,8 ☑B Mg atoms have electron arrangement 2,8,2 ∴ Mg ⁺ ions have arrangement 2,8,1 ☑C F atoms have electron arrangement 2,7 ∴ F ⁺ ions have arrangement 2,6 ☑D Ne atoms have electron arrangement 2,8 ∴ Na ⁺ ions have arrangement 2,7						
6	D	67	☑A Bonding type is covalent molecular as it does not conduct and has low mpt/bpt ☑B Bonding type is ionic as is does not conduct as solid but does conduct as liquid ☑C Bonding type is metallic as it conducts both as a solid and a liquid ☑D Bonding type is covalent network as it does no conduct and has very high mpt						
7	C	57	concentration = $\frac{\text{no. of moles}}{\text{volume}} = \frac{0.1 \text{ mol}}{0.25 \text{ litres}} = 0.4 \text{ mol } l^{-1}$						
8	В	82	 ■A An alkaline solution contains more OH⁻ ions than H⁺ ions (still contains some H⁺) ■B An alkaline solution contains more OH⁻ ions than H⁺ ions ■C An acidic solution contains more H⁺ ions than OH⁻ ions ■D A neutral solution contains equal numbers of H⁺ ions and OH⁻ ions 						
9	C	64	 ☑A Diluting acids with water increases pH until it reaches pH=7 ☑B Diluting acids with water increases pH until it reaches pH=7 ☑C Diluting acids with water decreases the H⁺ ion concentration as water is added ☑D Diluting acids with water decreases the H⁺ ion concentration as water is added 						
10	D	84	C_9H_{20} structure drawn is the isomer 3,4-dimethylheptane \times different isomer not same structure \times B C_9H_{20} structure is 3,4-dimethylhexane \times different formula not same structure \times C C_9H_{20} structure is 3,3-dimethylhexane \times different isomer not same structure \times C C_9H_{20} structure is 3,3-dimethylheptane \times different isomer not same structure \times D C_9H_{20} structure is 3,4-dimethylheptane \times same formula and same structure						
11	С	75	C_6H_{14} structure drawn is 2-methylpentane $\blacksquare A$ Cyclohexane C_6H_{12} has different formula so cannot be an isomer of C_6H_{14} . $\blacksquare B$ 2-methylpentane again but drawn different so cannot be an isomer. $\blacksquare C$ 3-methylpentane C_6H_{14} so same formula but different structure so is an isomer. $\blacksquare D$ 2-methylbutane C_5H_{12} has different formula so cannot be an isomer of C_6H_{14} .						
12	C	46	 ☑A Hydrogenation: Adding hydrogen across a C=C double bond to form alkane ☑B Combustion: burning compound in oxygen to form CO₂ and H₂O ☑C Hydration: Adding H₂O across C=C double bond to form alcohol ☑D Reduction: Gaining electrons 						

			✓ A pentan-2-ol: five carbons linked by single bonds with -OH group in Carbon No 2
13	13 A	44	■B Pentan-4-ol: The -OH group has not given the lowest numbering system ■C 1-methylbutan-3-ol: Longest continuous chain of carbons with -OH group is 5
		' '	■D 4-methylbutan-1-oil Longest continuous chain of carbons with -OH group is 5
			Alcohol Methanol Ethanol Propanol Butanol Pentanol Hexanol Heptanol Octanol
			Formula CH ₃ OH C ₂ H ₅ OH C ₃ H ₇ OH C ₄ H ₉ OH C ₅ H ₁₁ OH C ₆ H ₁₃ OH C ₇ H ₁₅ OH C ₈ H ₁₇ OH
			Melting Point low → high
14	В	//	Boiling Point low high
			Solubility high low Strength of
			Intermolecular low high
			🗷 A metal beaker used instead of glass beaker to allow heat to conduct better
15	В	55	☑B metal beaker and draught shield should be used for the most accurate result
15	D		
			D draught shield should be used to reduce heat loss
			■ A Alcohol used must be 2 carbon ethanol not 3 carbon propan-1-ol
16		68	B Alcohol used must be 2 carbon ethanol not 3 carbon propan-1-ol
10			\square C 2 carbon alcohol and 3 carbon haloalkane with -Cl group on C_2 of three carbons
			D one of the reactants must be an alcohol with a -OH hydroxyl group
			A X is most reactive as it reacts with water. Y is least reactive as it reacts
			slowest with dilute acid. Z is more reactive than W as Z reacts faster with
17	A	88	dilute acid
_,	' ' '		EB Y must be the least reactive metal as it has slowest reaction with dilute acid
			ECZ is less reactive than X as Z does not react with water
			■ Y must be the least reactive metal as it has slowest reaction with dilute acid • H _{2(a)} + 2e ⁻
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
18	В	58	
10	D	50	$\bullet^{Add}_{0'+\Theta}$ $2H_{2(g)}$ + $2H_{2}O(t)$ + $O_{2(g)}$ + $4e^{-}$ \longrightarrow $4H^{+}(aq)$ + $4e^{-}$ + $4OH^{-}(aq)$
			$_{down}^{cancel}$ 2H ₂ (g) + 2H ₂ O(l) + O ₂ (g) + $_{4}e^{-}$ + 4H [*] (aq) + $_{4}e^{-}$ + 4OH [*] (aq)
			redox $2H_{2(g)} + 2H_{2}O(1) + O_{2(g)} \rightarrow 4H^{+}(aq) + 4OH^{-}(aq)$
			largest Voltage
19	Λ	03	Order in Electrochemical series Zinc Nickel Tin Lead
19		93	Order in Electrochemical series Zinc Nickel IIII Lead
			smallest voltage
			🗷 A Ammonium chloride contains the element nitrogen and is soluble
20		02	☑B Ammonium phosphate contains elements nitrogen & phosphorus and is soluble
20		82	☑C sodium chloride does not contain nitrogen, phosphorus or potassium
			☑D Sodium phosphate contains the element phosphorus and is soluble
			☑A Nickel is the catalyst used in the production of margarine from vegetable oil
21		82	🗷 B Platinum is the catalyst in the Ostwald Process where nitric acid is produced
	C1 C		☑C iron is the catalyst in the Haber Process where ammonia is produced
		ļ	ED Rhodium is a transition metal used in a catalytic converter in a car
			■ A beta particles bend towards the positive electrode ∴ Y is not a beta particle
22	N	67	■B alpha particles bend towards the negative electrode : Y is not a alpha particle
66		0/	EC beta particles bend towards the positive electrode X is not a beta particle
			☑D X is alpha (bends towards to negative electrode) & Y is gamma (does not bend)

23	٥	70	 ☒A covalent bonding contains a shared pair of electrons and two nuclei ☒B there is no attraction between negative ions and electrons (they repel) ☒C ionic bonding is the force of attraction between negative ions and positive ions ☒D metallic bonding is the force of attraction between positive ions and delocalised electrons
24	В	53	 ☑A neutralisation: reaction of H⁺ ions to form H₂O ☑B precipitation: two ions combining to form an insoluble solid. ☑C addition: adding a molecule across a C=C double bond ☑D redox: electrons are transferred between reduction and oxidation reactions
25	D	69	 ☑A Filtration (Step Z) must occur before evaporation (Step X) ☑B Neutralisation Step Y must be first step ☑C Neutralisation Step Y must be first step ☑D Order: Neutralisation (Y) followed by Filtration (Z) followed by Evaporation (X)

201	8 National	5 Chemistry Marking Scheme					
Long Qu	Answer	Reasoning					
1a	Carbon dioxide	hydrochloric acid + calcium - calcium + water + carbon dioxide ACID + METAL - SALT + WATER + CARBON DIOXIDE					
1b(i)	$0.5 \text{ cm}^3 \text{ s}^{-1}$	Rate = $\frac{\Delta Quantity}{\Delta Time} = \frac{77 - 62 \text{ cm}^3}{50 - 20 \text{ s}} = 0.5 \text{ cm}^3 \text{ s}^{-1}$					
1b(ii)	Graph showing:	1 mark One mark is awarded for a graph which shows points plotted rather than bars. 1 mark 1 mark					
1b(iii)	68±1	Problem Solving: Reading information from a graph.					
1c	One answer from:	Greater number of Greater concentration Greater moles of hydrogen ions/H ⁺ of hydrogen ions/H ⁺ hydrogen ions/H ⁺ More H ⁺ ions					
2α(i)	addition	Addition reactions involve the opening up of the 2 nd bond in a C=C double bond and single bonds being formed on either side. Addition Polymerisation is when the C=C double bond in the monomer opens up and joins with other monomers to form a long polymer chain.					
2a(ii)	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
2b	Н Н 	A addition monomer always has the shape: The monomer given in the question has four fluorine atoms in its corners. The other monomer has four hydrogen atoms in its corners.					
За	Increase the percentage of carbon increases the average heat content	Problem Solving: Spotting a relationship in a table					
3b	46.7	gfm FeS ₂ : $(1x56) + (2x32) = 56 + 64 = 120$ (1 mark) % Fe = $\frac{56}{120} \times 100 = 46.7\%$ (1 mark)					
4 a	carbon & hydrogen	A hydrocarbon is a compound containing the elements carbon and hydrogen only.					
4b	2-methylpropane or methylpropane	The longest continuous chain of carbons is 3 name ends in propane A 1 carbon side group is called a methyl methylpropane The methyl group is on 2 nd carbon 2-methylpropane (It is acceptable to drop the number 2 as the methyl group can only be positioned on carbon number 2)					

4c	stronger intermolecular	The process of evaporation/boiling does not change the strong covalent bonds inside a molecule. Boiling/evaporation is dependent on the weaker intermolecular bonds between molecules. The higher boiling point of butane compared to isobutene is due to the stronger intermolecular bonds between butane molecules compared to isobutene molecules.						
4d	150-154° <i>C</i>	Alkane Pentane H Boiling Point (°C) 36 Difference: 33 Prediction: -	Hexane Heptane Octane Nonane 69 98 126 - 29 28 Prediction: 27 - - - - 153					
5a	Sodium azide, potassium nitrate and silicon dioxide	Problem Solving: Gathering information from a passage						
5b	Potassium	Element Ion Flame Colour Barium Ba²+ Green Potassium K* Lilac Calcium Ca²+ Orange-red Sodium Na* Yellow	Element Ion Flame Colour Copper Cu²+ Blue-green Strontium Sr²+ Red Lithium Li+ Red					
5c	SiO ₂	Write down Valency below each element's symbol Si 4 2	to in Cross-over Arrows Si O Si $_2$ O4 Cancel Down SiO $_2$					
5d	44	Total volume given off is the maximum height attained by the graph.						
6a(i)	2	The two lines on the graph represent the two different isotopes of boron with mass numbers of 10 and 11.						
6a(ii)	10.8	$ram = \frac{(10 \times 20) + (10 \times 20)}{100}$	$\frac{11\times80)}{100} = \frac{200+880}{100} = 10.8$					
6b	¹⁴ ₆ C	Atomic number = number o Mass number = no. of prot	of protons = 6 ons + no. of neutrons = 6+8 = 14					
7a	Lattice	Ionic compounds have a structure positive and negative ions in each This structure is called a lattice s	direction.					
7b(i)	Ions are free to move	In the solid state, ions are locked together in a lattice structure and cannot move. The circuit cannot be completed without the movement of ions. In the liquid/molten state or the solution state, ions are free to move and will compete the circuit.						
7b(ii)	oxidation	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
7b(iii)	One answer from:	to be identified product is pr	re that only one To separate the strontium from the chlorine					
8	Open Question:	Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a Demonstrates a good understrain involved stateme the situe	mark answer trates a reasonable anding of the chemistry I, making some ent(s) which are relevant to ation, showing that the is understood. 1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the					

		involved and the application of chemistry within the problem is these to respond to the problem.						
9a(i)	contains C=C double bond	Saturated: All bonds between carbons are single bonds and it does not decolourise bromine solution quickly. Unsaturated: At least one C=C double bond between carbons and will decolourise bromine solution quickly.						
9a(ii)	Bromine solution decolourises	Bromine Br_2 adds across a $C=C$ double bond by addition reaction. Each bromine joins across where the $C=C$ double bond used to be and leaves a $C-C$ single bond in its place. Bromine solution is yellow/orange and decolourises (loses its colour) when it adds across the $C=C$ double bond.						
9b	472.8	heat energy = specific heat capacity \times mass \times change in Temperature $E_h = c \times m \times \Delta T$ $E_h = 1.97 \text{ kJ kg}^{-1} \circ C^{-1} \times 1.5 \text{kg} \times 20 \circ C$ $E_h = 472.8 \text{ kJ}$						
10a(i)	N ₂ + 3H ₂ ← 2NH ₃	N ₂ + H ₂ ⇒ NH ₃ 2×N atoms on LH5 but only 1×N atom on RH5 ∴ Double NH ₃ N ₂ + H ₂ ⇒ 2NH ₃ 2×H atoms on LH5 but 6×H atoms on RH5 ∴ treble H ₂ N ₂ + 3H ₂ ⇒ 2NH ₃						
10a(ii)	One answer from:	Reaction is Reaction occurs in The reaction is reversible both directions at equilibrium						
10b	Answer showing:	HON HON HON H						
10c	Ostwald Process	ammonia + oxygen $\frac{\text{platinum}}{\text{catalyst}}$ nitrogen monoxide + water $4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$ $\downarrow \text{oxygen}$ $\downarrow \text{NO}_2$ $\downarrow \text{water}$ $\downarrow \text{Nitric Acid}$						
10d	ammonium nitrate	ammonia + water — ammonium hydroxide ammonium nitric ammonium hydroxide acid nitrate						
11a	Arrow showing flow through wires from magnesium/right to copper/left	Electrons travel through wires while ions flow through the solution. Electrons travel from higher metal in electrochemical series (magnesium on right) to metal lower down electrochemical series (copper on left).						

11b	One answer from:	Completes the circuit/cell allows ions to flow/move/transfer (between the two beakers)			1 (provide ions to complete circuit/cell		
11c	Cu ²⁺ + 2e ⁻ → Cu	Reduction is the gain of electrons by the reactant. Cu ²⁺ ions will gain 2 electrons to become Cu metal.						
11d	Insoluble	Magnesium phosphate is insoluble (p8 of data booklet) and the ions are not able to move so the circuit would not be complete.						
12a	Alpha Particles are stopped by paper	Radiation Alpha Mass 4 Charge 2 Stopped by Paper Deflection Towards ne Use smoke detecto		r egative e	Beta O -1 Aluminium Towards positive Measuring thickness of paper in paper mi		Gamma No mass No charge Thick lead No defection Radiotherapy cancer treatment	
12b	14.8	Number of ha 0 1 2 3 4 1 half-life = 3.7 years 4 half-live			Fraction 1 1/2 1/4 1/8 1/16 7 years = 1			
12c	increases stays the same	i	$^{204}_{81}\text{TI} \rightarrow ^{204}_{82}\text{Pb} + ^{0}_{-1}\text{e}$					
13a(i)	Carboxyl group	O O O O O O O O O O						
13a(ii)	134	$Gfm\ C_4H_6O_5 = (4\times12) + (6\times1) + (5\times16) = 48 + 6 + 80 = 134g$						
13b	As halogen atom goes down group 7 the acidity decreases.	Any correct statement linking acidity to the position of the halogen The acidity (of the carboxylic acids) iodine to fluorine decreases going the acidity the highest acidity is at the bottom (of the group) The one at the top of the one that has the lowest acidity is at the bottom (of the group)						
13c	OH H H H H	The carbon with the hydroxyl -OH group changes. 2 hydrogens are removes and replaces with a C=O group forming a carboxyl -COOH group on that carbon. Any structure of 4-methylpentanoic acid is correct.						
14a	С	Sample C is only sample with chloride ion concentration below 0.25 g l ⁻¹						
14b(i)	Pipette	A pipette is the most appropriate piece of equipment to measure exact volume of liquids. They are more accurate that using measuring cylinders and beakers.						
14b(ii)	One answer from:	2 & 4 are concordant	They are within 0·2c	m³ wi	•	two are no	1 and 3 or the other ot concordant or not 0.2 of each other	

14b(iii)	0.000161	no. of moles = volume \times concentration = 0.00805litres \times 0.02mol l^{-1} = 0.000161mol					
15a	Diamond(s) anvil cell	Problem Sol	ving Que:	stion			
15b(i)	1.9million or 1900000	1000gigapascals \longleftrightarrow 10million atmospheres 190 gigapascals \longleftrightarrow 10million atmospheres x $^{190}/_{1000}$ = 1.9 million atmospheres					
15b(ii)	Light bulb would not						
130(11)	light up	Circuit will n	ot be co	nplete c	and the bulb w	vill not light up.	
15c	Fe_2O_3 \downarrow $O_2 + Fe_5O_7$	Problem Sol	ving Que:	stion			
16a(i)	Homologous Series	_			ies of compou and a general f	nds that have Formula.	
		Name	Methan		Ethanethiol	Propanethiol	
16000	C _n H _{2n+1} SH or C _n H _{2n+2} S or C _n H _{2n+1} HS	Structure	H—C—s		H H H H H C - C - S H H H H	H—C—C—C—S 	
16a(ii)		Formula	CH₃SH		C₂H₅SH	C₃H ₇ SH	
		Relationship	If n=1, 2n+1=3		If n=2, 2n+1=5	5 If n=3, 2n+1=7	
		General Formula	C _n H _{2n} .	.₁SH	C _n H _{2n+1} SH	C _n H _{2n+1} SH	
16b	Any answer from:	Sulphur oxide Sulphur monoxide Sulphur dioxide Sulphur trioxid				ide Sulphur trioxide	
16c	960	$\begin{array}{c} \textbf{gfm } \text{CH}_3\text{OH} = (1 \times 12) + (4 \times 1) + (1 \times 16) = 12 + 4 + 16 = 32g \\ \textbf{no. of mol} = \frac{\textbf{mass}}{\textbf{gfm}} = \frac{640g}{32g \text{ mol}^{-1}} = 20 \text{mol} \\ \textbf{CH}_3\text{OH} + \textbf{H}_2\text{S} \longrightarrow \textbf{CH}_3\text{SH} + \textbf{H}_2\text{O} \\ 1 \text{mol} & 1 \text{mol} \end{array}$					
		20mol		20mol			
		gfm CH ₃ SH = (1×12)+(4×1)+(1×32) = 12+4+32 = 48g					
		mass = no. of mol × gfm = 20mol × 48g mol ⁻¹ = 960g					
		3 mark a			ark answer	1 mark answer	
17	Open Question:	Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.		understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. understanding of involved. The cand some statement(s the situation, showing that the situation involved involved. The cand some statement(s the situation is understood.		Demonstrates a <u>limited</u> understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.	